Intensity Frontier

Common Offline Documentation:
art Workbook and Users Guide

Alpha Release 0.60 working draft
June 17, 2014

This version of the documentation is written for version vO_00_18 of the art-workbook
code.

Scientific Computing Division
Future Programs and Experiments Department

Scientific Software Infrastructure Group

Principal Author: Rob Kutschke
Editor: Anne Heavey

art Developers: L. Garren, C. Green,
J. Kowalkowski, M. Paterno and P. Russo

List of Chapters

Detailed Table of Contentsl

[List of Figures|

[List of Tables|

I Intr 1

3 Introduction to the art Event Processing Framework|

4 Unix Prerequisites|

IS Site-Specific Setup Procedure|

[6 Get your C++ up to Speed|

iv

xviii

xxi

xxiii

33

44

46

[7 Using External Products in UPS|

[II_Workbookl

8 Preparation for Running the Workbook Exercises

9 Fxercise T: Run Pre-buil Modules

M0 Exercise 2: Build and Run Your First Moduld

(11 Keeping Up to Date with Workbook Code and Documentation|

2 Fxercise 3.5 her Member Funch FModules

M3 Exercise 4: A First Look at P Sets

(14 Exercise 5: Making Multiple Instances of a Module|

(15 Exercise 6: Accessing Data Products|

(16 Exercise 7: Making a Histogram|

(17 Looping Over Collections|

(18 The Geometry Service|

[19_The Particle Data Table]

20 GenParticle: Properties of Generated Particles|

i

97

109

110

114

144

196

201

211

232

238

255

276

277

278

279

I Users Guide]

21 Obtaining Credentials to Access Fermilab Computing Resources

22 gif

23 art Run-time and Development Environments|

24 _art Framework Parameters|

25 Job Configuration in art: FHiCL |

26_Data Products

28 Analyzer Modules|

29 HKilter Modules

30_art Services

31 art Input and Output|

art Misc Topics that Will Find Hom

IV Index

il

280

281

283

292

300

306

325

327

328

329

330

338

343

359

Detailed Table of Contents

[Detailed Table of Contents|

[List of Figures|

List of Tables

art ossar

Il_Introduction|

TH Read this D onl
(1.1 If you are new to HEP Software...|
(1.2 It you are an HEP Software expert...|
[1.3 If you are somewhere in between...|

o . Used in this D onl

[3 Introduction to the art Event Processing Framework|

3.2 Why art?
B3 CH+and CHHIT
[3.4 Getting Help|
3.5 Overview of the Documentation Suitel

v

XViii

XXi

XXiii

j—t

W NN

[3.5.5 Technical Referencel 11
[3.5.6 Glossary| 11

[3.6 Some Background Materiall 11
361 EventsandEventIDd 12
[3.6.2 art Modules and the Event Loop| 13
[3.6.3 Module Types| 17
3.6.4 art Data Products 18
[3.6.5 art Services| 19
[3.6.6 Shareable Libraries and artl 20
[3.6.7 Build Systems and art| 20
3.6.8 External Productslo 21
[3.6.9 The Event-Data Model and Persistency| 23
3.6.10 Event-Data Files| 24
[3.6.11 Fileson Tape|. 25

3.7 The Toy Experiment| 25
[3.7.1 Toy Detector Description| 26
[3.7.2 Workflow for Running the Toy Experiment Code] 27

[3.8 Rules, Best Practices, Conventions and Style] 31
[4 Unix Prerequisites| 33
4.1 Introductionl 33
M2 Commands 33
B3 Shelld 35
4.4 Scripts: Part 1| 35
45 Unix Environments 36
{4.5.1 Building up the Environment| 36
[4.5.2 Examining and Using Environment Variables| 37

4.6 Paths and $PATH| 38
4.7 Scripts: Part 2 40
4.8 bash Functions and Aliases 41
4.9 Login Scripts| 42
{4.10 Suggested Unix and bash References| 42
b Site-Specific Setup Procedure| 44

6 Get your C+4 up to Speed|

6.1 Introductionl 46
[6.2 Establishing the Environment| 48
[6.2.1 Initial Setup| 48
[6.2.2 Subsequent Logins| 48

6.3 C+4 Exercise 1: The Basics| 49
[6.3.1 Concepts to Understand| 49
[6.3.2 How to Compile, Link and Run| 50
[6.3.3 Suggested Homework| 51
[6.3.4 Discussionl 52
[6.3.5 How was this Exercise Built? 52

[6.4 C+4 Exercise 2: About Compiling and Linkingl 53
6.4.1 What You Will Learnl 53
[6.4.2 The Source Code for this Exercisel 53
[6.4.3 Compile, Link and Run the Exercise 55
[6.4.4 Alternate Script build2 59
[6.4.5 Suggested Homework| 60

0.5 C Exercise 3: Libraries| 61
6.5.1 What You Will Learn| 62
[6.5.2 Building and Running the Exercise| 62

.6 Classes o o 66
[6.6.1 Introductionl 66
[6.6.2 C++ Exercise 4 vI: The Most Basic Version| 67
[6.6.3 C++ Exercise 4 v2: The Default Constructor 72
[6.6.4 C++ Exercise 4 v3: Constructors with Arguments| 74
[6.6.5 C++ Exercise 4 v4: Colon Initializer Syntax] 77
[6.6.6 C++ Exercise 4 vb: Member functions 79
[6.6.7 C++ Exercise 4 v6: Private Data and Accessor Methods| 83
6.6.7.1 Setters and Getters] 83

6.6.7.2 What's the deal with the underscore?l. 87

[6.6.7.3 An example to motivate private data|. 88

[6.6.8 C++ Exercise 4 v7: The inline Identified 89
[6.6.9 C++ Exercise 4 v8: Defining Member Functions within the Class |
Declarationf 91

[6.6.10 C++ Exercise 4 v9: [he stream insertion operator{ 92

vi

6.7 CH+4 References| 95

[7 Using External Products in UPS| 97
(.1 The UPS Database List: PRODUCTS 97
[7.2 UPS Handling of Variants of a Product| 99
[7.3 The setup Command: Syntax and Function| 99
[7.4 Current Versions of Products| 101
[7.5 Environment Variables Defined by UPS|. 101
[7.6 Finding Header Files| 102
[7.6.1 Introductionl 102

[7.6.2 Finding art Header Files| 103

[7.6.3 Finding Headers from Other UPS Products| 105

[7.6.4 Exceptions: [he Workbook, ROOT and Geant4 106

Il Workbook| 109
[8 Preparation for Running the Workbook Exercises| 110
8.1 Introductionl 110
[8.2 Getting Computer Accounts on Workbook-enabled Machines|. 110
[8.3 Choosing a Machine and Logging In[. 111
[8.4 Launching new Windows: Verify X Connectivity|. 112
B5 Choosean Editod. 112
9 Exercise 1: Run Pre-built art Modules| 114
9.1 Introductionl 114
[9.2 Prerequisites| 114
9.3 What You Will Learn|. 114
9.4 The art Run-time Environment| 115
[9.5 The Input and Configuration Files for the Workbook Exercises| 116
[9.6 Setting up to Run Exercise 1| 0L 117
9.6.1 LoglinandSetUp 117

[9.6.1.1 Initial Setup Procedure using Standard Directory| 117

[9.6.1.2 Initial Setup Procedure allowing Self-managed Working |

Directory|. 118

vii

[9.6.1.3 Setup for Subsequent Exercise 1 Login Sessions|

[9.7 Execute art and Examine Output|

[9.8 Understanding the Configuration|

Some Bookkeeping Syntax|.

Some Physics Processing Syntax,

0.8.1
9.8
0.83

art Command line Options|.

[9.8.5 Changing the Input Files|.
[9.8.6 Skipping Events|
[9.8.7 Identifying the User Code to Execute]
088 Pathd.
[9.8.9 Writing an Output Filel

[9.9 Understanding the Process for Exercise 1|
[9.9.1 Follow the Site-Specific Setup Procedure (Details)|
[9.9.2 Make a Working Directory (Details)[.
[9.9.3 Setup the toyExperiment UPS Product (Details)|
[9.9.4 Copy Files to your Current Working Directory (Details)|
[9.9.5 Source makeLinks.sh (Details)[.
[0.9.6 Run art (Details)|.
0.10 How does art find Modules?
Q.11 How does art find FHICL Files?
[9.11.1 The -c command line argument|
112 #incl Filed

I0E e 7~ Build and Run Your Firsi Moduld

IlQ.l |||t|Qduct|Q“|
[10.2 Prerequisites|
|1Q,3 MMllat IQu M!I” Leal“l

{10.4 Initial Setup to Run Exercises: Standard Procedure|

[10.4.1 "Source Window"™ Setup|

[10.4.2 Examine Source Window Setup|

(10.4.2.1 About git and What it Didl
(10.4.2.2 Contents of the Source Directory|

(10.4.3 "Build Window™ Setup|.o

(10.4.3.2 Using Self-managed Working Directory| 152

[10.4.4 Examine Build Window Setup| 152

[10.5 Setup for Subsequent Login Sessions| 156
(10.6 The art Development Environment, 157
[10.7 Running the Exercise|. oL 161
(10.7.1 Runarton first.fcll 161
(10.7.2 The FHIiCL File first.fcll 161
[10.7.3 The Source Code File First module.cc| 162
10.7.3.1 The #incl tatements| 164

[10.7.3.2 The Declaration of the Class First, an Analyzer Modulell 64

(10.7.3.3 An Introduction to Analyzer Modules 166

(10.7.3.4 The Constructor for the Class Firstl 167

[10.7.3.5 Aside: Omitting Argument Names in Function Declara- |

tions| 168

[10.7.3.6 The Member Function analyze and the Representa- |

tionofan Event| L. 169

[10.7.3.7 Representing an Event Identifier with art: :EventID| 171

(3. : I'ne Module Maker Macros| . 173

[10.7.3.9 Some Alternate Styles| 174

[10.8 What does the Build System Do?| 176
(10.8.1 The Basic Operation|. 176
[10.8.2 Incremental Builds and Complete Rebuilds| 178
[10.8.3 Finding Header Files at Compile Time| 180
[10.8.4 Finding Shared Library Files at Link Time/. 181
[10.8.5 Build System Details|. 0. 183
[10.9 Suggested Activities| 184
[10.9.1 Create Your Second Module| 184
(10.9.2 Use artmod to Create Your [hird Modulel 186
(10.9.3 Running Many Modules at Oncef 188
(10.9.4 Access Parts of the EventlD| 190
(10.10Final Remarksl 191
(10.10.1 Why is there no First_module.h File?|. 191
[10.10.2 The Three-File Module Stylel 192
10.11Flow of Execution from r EHICL Filel 194

X

(11 Keeping Up to Date with Workbook Code and Documentation|
11.1 Intr oNl . ..
[11.2 How to Update|.
(11.2.1 Get Updated Documentation|
(11.2.2 Get Updated Code and Build It|
[11.2.3 See which Files you have Modified or Added|

[12.6 The Source File Optional module.cc|
[12.6.1 About the begin* Member Functions|
1262 A he art::*ID Classes]

[(12.6.5 The analyze Member Function|
(12.7 Running this Exercise|

[12.8 The Member Function beginJob versus the Constructor |
[12.9 Suggested Activities|
[12.9.1 Add the Matching end Member functions|
(12.9.2 Run on Multiple Input Files|
[12.9.3 The Option —trace |

[13.2 Prerequisites|
(13.3 What You Will Learnl.
[13.4 Setting up to Run this Exercise|
[13.5 The Configuration File psetO0l.fcl|.
[13.6 The Source code file PSet01_module.cc|
[13.7 Running the Exercise|.

[13.8 Member Function Templates and their Arguments,

196
196
196
197
197
199

201
201
202
202
203
203
203
204
204
205
205
206
207
207
209
209
210
210

[13.9 Exceptions| 223

(13.9.1 Error Conditionsl 223
(13.9.2 Error Handlingl 223
[13.9.3 Suggested Exercises| 224
(13.10Parameters and Data Members| 225
[13.110ptional Parameters with Default Values| 226
[13.11.1 Policies About Optional Parameters| 227
[13.12Numerical Types, Precision and Canonical Forms| 228
[13.12.1Suggested Exercises| 229

(14 Exercise 5: Making Multiple Instances of a Module] 232
(14.1 Introduction| L 232
[14.2 Prerequisites| 232
(14.3 What You Will Learnl. 232
[14.4 Setting up to Run this Exercise| 233
[14.5 The Source File Magic_module.cc| 233
(14.6 The FHICL File magic.fcl| 234
[14.7 Running the Exercise|. 234
(14.8 Discussionl 235
[14.8.1 Order of Analyzer Modules is not Important| 235
(14.8.2 Two Meanings of Module Label| 236

[14.9 Suggested Exercise|o 236
DE4I0Review o o 236
(15 Exercise 6: Accessing Data Products| 238
(15.1 Introduction| 238
[15.2 Prerequisites| 238
153 What You Will Learn|., 239
[15.4 Background Information for this Exercise| 239
(15.4.1 The Data Type GenParticleCollection|. 240
(15.4.2 Data Product Names| 241
[15.4.3 Specifying a Data Product|. 243
(15.4.4 The Data Product used in this Exercisel 244

[15.5 Setting up to Run this Exercise| 244
[15.6 Running the Exercise|. 245

xi

[15.7 Understanding the First Version, ReadGensl1| 245

[15.7.1 The Source File ReadGensl module.cc| 245
[15.7.2 Adding a Link Library to CMakeLists.txt| 249

15.7.3 The FHIiCL File r nsl.fcll. 249

[15.8 The Second Version, ReadGens2| 250
[15.9 The Third Version, ReadGens3| 251
[15.105uggested Exercises| 252
MoIIReview! oo 253
[16 Exercise 7: Making a Histogram| 255
(16.1 Introductionl 255
[16.2 Prerequisites| 256
(16.3 What You Will Learnl. 256
[16.4 Setting up to Run this Exercise| 256
[16.5 The Source File FirstHistl module.ccl 257
[16.5.1 Introducing art::ServiceHandle|. 261
[16.5.2 Creating a Histogram | 261
[16.5.3 Filling a Histogram | 263
(1654 A Few last Comments|., 263

[16.6 The Configuration File C++ firstHistl.fcl 264
(16.6.1 Two Kinds of ROOT filesl 264

16.7 The file CMakeLi 1 264
[16.8 Running the Exercise|. 267
16.9 Inspecting the Histogram File] 267
16.10A Short Cut: the browse command|. 270
(16.11Using CINT Scripts|, 270
(16.11.1Finding ROOT Documentation| 273
[16.125uggested Activities| 274
[16.12.1 Histogram Files are Overwritten| 274
[16.12.2 Changing the Name of the Histogram File] 274
[16.12.3 Changing the Module Labell 275
[16.12.4 Printing From the IBrowser|. 275
MEIBREVIEW - .« o o o oo oo e 275
[17 Looping Over Collections| 276

Xii

[17.1 Prerequisites|

172 What You Will Learnl.
[17.3 Running the Exercise|.

7.4 Discussion
[17.5 Suggested Activities|

(18 The Geometry Service|
[18.1 Prerequisites|
8.2 What You Will Tearnl.
[18.3 Running the Exercise|.
[[8.4 Discussionl
[18.5 Suggested Activities|

[19 The Particle Data Tablel
[19.1 Prerequisites|

(19.2 What You Will Learnl.
[19.3 Running the Exercise|.

(19.4 Discussionl
[19.5 Suggested Activities|

20 GenParticle: Properties of Generated Particles|

[20.1 Prerequisites|
20.2 What You Will Learn|.
[20.3 Running the Exercise|. oo

[20.4 Discussionl
[20.5 Suggested Activities|

Ul Users Guidel

21 Obtaining Credentials to Access Fermilab Computing Resources|

277
277
277
277
277
277

278
278
278
278
278
278

279
279
279
279
279
279

280

281
281
282

283

[22.1.1 Central Repository, Local Repository and Working Directory| . . .
[22.1.1.1 Files that you have Added|.
[22.1.1.2 Files that you have Modified|
[22.1.1.3 Files with Resolvable Conflicts]

[22.1.2 git Branches|
[22.1.3 Seeing which Files you have Modified or Added|

(23 art Run-time and Development Environments|
23.1 The art Run-time Environment!
[23.2 The art Development Environment,

24 _art Framework Parameters|

[24.3.1 System Services|o
[24.3.2 FloatingPointControlf.
[24.3.3 Message Parameters|
[24.3.4 Optional Services| L

25 Job Configuration in art: FHIiCL |
[25.1 Basics of FHICL Syntax|

[25.1.1 Specifying Names and Values|
(25.1.2 FHiCl-reserved Characters and Identifiers|.

[25.3 Structure of a FHICL Run-time Configuration File for art|.
[25.4 Order of Elements in a FHiCL Run-time Configuration File for art|
[25.5 The physics Portion of the FHICL Configuration|
[25.6 Choosing and Using Module Labels and Path Names|
[25.7 Scheduling Strategy inart| L

X1V

284
285
285
286
286
286
289

292
292
296

300
300
301
303
303
303
305
305
305
305

26 Data Products| 325
26.1 Overview| 325
26.2 The Full Name of a Data Productl 325

27 Producer Modules 327

[28 Analyzer Modules| 328

29 Filter Modules 329

130 _art Services| 330
30.1 About Services| 330
30.2 Service Handlesl 331
[30.3 Implementing Simple Services| 332
[30.4 Configuring a Servicel 333
[30.5 Accessing a Service] 334
[30.6 Writing a Service|. 334

[30.6.1 Declaring and Defining Services| 335
30.7 Service Interfaces)o 337

(31 art Input and Output]| 338

[31.1 Input Modules| 338

[31.1.1 Configuring Input Modules to Read from Files| 338
[31.2 Output Filtering| 341
[31.3 Configuring Output Modules|. 342
art Misc Topics that Will Find Home 343

[32.0.1 The Bookkeeping Structure and Event Sequencing Imposed by art| 343
32.1 Rules for Module Names| 345
32.2 Data Products and the Event Data Model 347
B23 Basicart Rulesd 347
[32.4 Compiling, Linking, Loading and Executing C4—+ Classes and art Modules| 348
[32.5 Shareable Libraries and art]. 351
[32.6 Namespaces, art and the Workbook| 351

XV

328 Code Guardsl 353
[32.9 Inheritancel 355
[32.9.1 Introductionl 355

3292 Homeworkl 355

[32.9.3 Discussion| 356
B210Inheritance Relid 357
B2IIPointers 357
[32.12RootOutput and table of event IDs| 358
[32.13Troubleshooting| 358
1V _Index 359

Xvi

Xvii

List of Figures

[3.1 The principal components of the art documentation suite] 9
[3.2 Flowchart describing the art event loop for an input file that contains at |
| least one event. art begins at the box in the upper left and ends at the |
| box in the lower right. On the first event, the tests for new subRun and |
| new run are true. Not all features of the event loop are shown, just those |
| that you will encounter in the early parts of the art workbook. The case |
| of a file with no events is not shown because it has many subcases and is |
| not of general interest. | 16
[3.3 The geometry of the toy detector; the figures are described in the text. A |
| uniform magnetic field of strength 1.5 [is oriented in the +z direction.| 26
[3.4 Event display of a simulated event in the toy detector.| 29
[3.5 Event display of another simulated event in the toy detector; a K~ (blue) |
| is produced with a very shallow trajectory and it does not intersect any |
| detector shells while the K (red) makes five hits in the inner detector |
| and seven in the outer detector|. 30
[3.6 The invariant mass of all reconstruct pairs of oppositely charged tracks; |
| for this all reconstructed tracks are assumed to be kaons) 31
4.1 Hierarchies of the art Workbook (left) and experiment-specific (right) |
| computing environments| 37
(6.1 Memory diagram at the end of a run of Classes/vl/ptest.cc 72
(6.2 Memory diagram at the end of a run of Classes/v6/ptest.cc| 86

9.1 FElements of the art run-time environment for the first Workbook exercisel 116

xXviii

[10.1 Representation of the reader's source directory structure (an admin di- |
| rectory is not shown)|. 149

[10.2 Representation of the reader's build directory structure (the fc1/ direc- |

| tory is a symlink to art-workbook/art-workbook/ in the source |

[10.3 Elements of the art development environment as used in most of the |
| Workbook exercises; the arrows denote information flow, as described in |

[the text. 158
[10.4 Representation of the reader's directory structure once the development |
| environment is established.] 160

[13.1 The FHICL definition of the parameter set psetTester frompset01.fcl.215

[15.1 File listing for ReadGensl_module.cc| 246

[16.1 Screen capture of the [Browser window immediately after opening output /fifrstHistl.root.

P 268
[16.2 Screen capture of the TBrowser window after displaying the histogram |
| hNGens; L. |. 269
[16.3 The figure made by running the CINT script drawHist1.C.| 271

[22.1 A figure to illustrate the idea of git branches, as used in the Workbook; |

| the figure is described in the text| 287
[22.2 A figure to illustrate the idea of git branches, as used in the Workbook; |
| the figure is described in the text| 290

[23.1 Elements of the art run-time environment, just for running the loy Ex- |

| periment code for the Workbook exercises | 293
[23.2 Elements of the art run-time environment for running an experiment's |
| code (everything pre-built) | 0oL 294
[23.3 Elements of the art run-time environment for a production job with offi- |
| cially tracked inputs|o 295
[23.4 Elements of the art development environment as used in most of the |
| Workbook exercises| 297

[23.5 Elements of the art development environment for building the full code |
| base of an experiment|o 298

Xix

[23.6 Elements of the art development environment for an analysis project that

| builds against prebuilt releasel 299
[32.1 lllustration of compiled, linked “regular” C++ classes (not art modules) |
| that can be used within the art framework. Many classes can be linked |
| into a single shared library. | L. 349
[32.2 lllustration of compiled, linked art modules; each module is built into a |
| single shared library foruse by art | 350

XX

List of Tables

[3.1 Compiler flags for the optimization levels defined by cetbuildtools; com- |

piler options not related to optimization or debugging are not included in |

this tabled 21

[5.1 Site-specific setup procedures for IF () Experiments at Fermilab; for the

equivalent procedure at a non-Fermi site, consult an expert from that

site. For the NOvA experiment, the procedure is a sequence of three

commands. For all others it is a single command, but in a few cases the

command is so long that the table shows it split over two lines: you must

type it as a single command on one line; the experiments whose command

is so split are ArgoNeut, LBNE and MicroBoone. | 45

[7.1 For selected UPS Products, this table gives the names of the associated |

namespaces. | he UPS products that do not use namespaces are discussed |

in Section [7.6.4, *The namespace tex is also used by the art Workbook, |

which is not a UPS product. | 106
[8.1 Experiment-specific Information for New Users|. 111
[8.2 Login machines for running the Workbook exercises 112
[9.1 The input files provided for the Workbook exercises| 117
[10.1 Compiler and Linker Flags for a Profile Build 184
................................... 229
[24.1 art Floating Point Parameters| 304

XX1

[24.2 art Message Parameters |

xxii

art Glossary

abstraction

analyzer module

API

art

art module

art path

artdaq

bash

the process by which data and programs are defined with a representa-
tion similar in form to its meaning (semantics), while hiding away the
implementation details. A system can have several abstraction layers
whereby different meanings and amounts of detail are exposed to the
programmer (adapted from Wikipedia’s entry for “Abstraction (com-
puter science)”.

an art module that may read information from the current event but that
may not add information to it; e.g., a module to fill histograms or make
printed output

Application Programming Interface

The art framework (art is not an acronym) is the software framework
developed for common use by the Intensity Frontier experiments to
develop their offline code and non-real-time online code

see module

a FHiCL sequence of art moduleLabels that specifies the work the job
will do

a toolkit that lives on top of art for building high-performance event-
building and event-filtering systems; this toolkit is designed to support
efficient use of multi-core computers and GPUs. A technical paper on
artdag can be found at .

a UNIX shell scripting language that is used by some of the support
scripts in the workbook exercises

xxiii

boost

build system

buildtool

catch
cetbuildtools

CETLIB

class

CLHEP

collection

configuration

a class library with new functionality that is being prototyped for in-
clusion in future C++ standards

turns source code into object files, puts them into a shared library, links
them with other libraries, and may also run tests, deploy code to pro-
duction systems and create some documentation.

a Fermilab-developed tool (part of cetbuildtools) to compile, link and
run tests on the source code of the Workbook

See exception in a C++ reference
a build system developed at Fermilab

a utility library used by art (developed and maintained by the art team)
to hold information that does not fit naturally into other libraries

The C++ programming language allows programmers to define program-
specific data types through the use of classes. Classes define types of
data structures and the functions that operate on those data structures.
Instances of these data types are known as objects. Other object ori-
ented languages have similar concepts.

a set of utility classes; the name is an acronym for a Class Library for
HEP

see run-time configuration

const member function a member function of a class that does not change the value of

constructor

DAQ
data handling

Data Model

non-mutable data members; see mutable data member

a function that (a) shares an identifier with its associated class, and (b)
initializes the members of an object instantiated from this class

data aquisition system

see Event Data Model

XXiv

data product

data type

Experiment-defined class that can represent detector signals, recon-
structed data, simulated events, etc. In art, a data product is the smallest
unit of information that can be added to or retrieved from an event.

See type

declaration (of a class) the portion of a class that specifies its type, its name, and any data

destructor

Doxygen

ED
EDAnalyzer
EDFilter
EDOutput
EDProducer
EDSource

Event

members and/or member functions it has

a function that (a) has the same identifier as its associated class but
prefaced with a tilde (~), and (b) is used to deallocate memory and do
other cleanup for a class object and its class members when the object
is destroyed

a system of producing reference documentation based on comments in
source code

a prefix used in art (e.g., for module types) meaning event-data
see analyzer module

see filter module

see output module

see producer module

see source module

In HEP there are two notions of the word event that are in common use;
see event (unit of information) or event (interaction). In this documen-
tation suite, unless otherwise indicated, we mean the former.

Event (interaction) An event (unit of data) may contain more than one fundamental in-

teraction; the science goal is always to identify individual fundamental
interactions and determine their properties. It is common to use the
word event to refer to one of the individual fundamental interactions.
In the near detector of a high-intensity neutrino experiment, for ex-
ample, there may be multiple neutrino interactions within the unit of
time that defines a single event (unit of information). Similarly, in a
colliding-beam experiment, an event (unit of information) corresponds

XXV

to the information from one beam crossing, during which time there
may be multiple collisions between beam particles.

Event (unit of information) In the general HEP sense, an event is a set of raw data associ-
ated in time, plus any information computed from the raw data; event
may also refer to a simulated version of same. Within art, the repre-
sentation of an event (unit of information) is the classs art : : Event,
which is the smallest unit of information that art can process. Anart : : Event
contains an event identifier plus an arbitrary number of data-products;
the information within the data-products is intrinsically experiment de-
pendent and is defined by each experiment. For bookkeeping conve-
nience, art groups events into a heirarchy: a run contains zero or more
subRuns and a subRun contains zero or more events.

Event Data Model (EDM) Representation of the data that an experiment collects, all the
derived information, and historical records necessary for reproduction
of result

event loop within an art job, the set of steps to perform in order to execute the
per-event functions for each event that is read in, including steps for
begin/end-job, begin/end-run and begin/end-subRun

event-data all of the data products in an experiment’s files; plus the metadata
that accompanies them. The HEP software community has adopted the
word event-data to refer to the software details of dealing with the in-
formation found in events, whether the events come from experimental
data or simulations.

event-data file a collective noun to describe both data files and files of simulated events

exception, to throw a mechanism in C++ (and other programming languages) to stop the
current execution of a program and transfer control up the call chain;
also called catch

experiment code see user code

external product for a given experiment, this is a software product that the experiment’s
software (within the art framework) does not build, but that it uses;
e.g., ROOT, Geant4, etc. At Fermilab external products are managed

XXVi

FermiGrid

FHiCL

FHiCL-CPP

filter module

framework (art)

by the in-house UPS/UPD system, and are often called UPS products
or simply products.

a batch system for submitting jobs that require large amounts of CPU
time

Fermilab Hierarchical Configuration Language (pronounced “fickle”),
a language developed and maintained by the art team at Fermilab to
support run-time configuration for several projects, including art

the C++ toolkit used to read FHiCL documents within art

an art module that may alter the flow of processing modules within an
event; it may add information to the event

The art framework is an application used to build physics programs
by loading physics algorithms, provided as plug-in modules; each ex-
periment or user group may write and manage its own modules. art
also provides infrastructure for common tasks, such as reading input,
writing output, provenance tracking, database access and run-time con-
figuration.

framework (generic) an abstraction in which software providing generic functionality can

free function

Geant4

git

handle

be selectively changed by additional user-written code, thus providing
application-specific software (significantly abbreviated from Wikipedia’s
entry for “software framework™); note that the actual functionality pro-
vided by any given framework, e.g., art, will be tailored to the given
needs.

a function without data members; it knows only about agruments passed
to it at run time; see function and member function

a toolkit for the simulation of the passage of particles through matter,
developed at CERN. http://geant4.cern.ch/

a source code management system used to manage files in the art
Workbook; similar in concept to the older CVS and SVN, but with
enhanced functionality

a type of smart pointer that permits the viewing of information inside

XX Vil

http://geant4.cern.ch/

IF
ifdh_sam

implementation

instance

instantiation

jobsub-tools

Kerberos

kinit

member function

message facility

a data product but does not allow modification of that information; see
pointer,data product

Intensity Frontier

a UPS product that allows art to use SAM as an external run-time agent
that can deliver remote files to local disk space and can copy output files
to tape. The first part of the name is an acronym for Intensity Frontier
Data Handling.

the portion of C++ code that specifies the functionality of a declared
data type; where as a struct or class declaration (of a data type) usually
resides in a header file (.h or .hh), the implementation usually resides
in a separate source code file (.cc) that “#includes” the header file

see instantiation

the creation of an object instance of a class in an OOP language; an
instantiated object is given a name and created in memory or on disk
using the structure described within its class declaration.

a UPS product that supplies tools for submitting jobs to the Fermigrid
batch system and monitoring them.

a single sign-on, strong authentication system required by Fermilab for
access to its computing resources

a command for obtaining Kerberos credentials that allow access to Fer-
milab computing resources; see Kerberos

(also called method) a function that is defined within (is a member of)
a class; they define the behavior to be exhibited by instances of the
associated class at program run time. At run time, member functions
have access to data stored in the instance of the class with they are
associated, and are thereby able to control or provide access to the state
of the instance.

a UPS product used by art and experiments’ code that provides facili-
ties for merging messages with a variety of severity levels, e.g., infor-
mational, error, and so on; see also mf

XXViil

message service
method

mf

module

module_type

moduleLabel

see member function

a namespace that holds classes and functions that make up the message
facility used by art and by experiments that use art; see message facility

a C++ class that obeys certain rules established by arf and whose source
code file gets compiled into a shared object library that can be dynam-
ically loaded by art. An art module “plugs into” a processing stream
and performs a specific task on units of data obtained using the Event
Data Model, independent of other running modules. See also module-
Label

a user-defined identifier whose value is a parameter set that art will use
to configure a module; see module and parameter set

Monte Carlo method a class of computational algorithms that rely on repeated random

sampling to obtain numerical results; i.e., by running simulations many
times over in order to calculate those same probabilities heuristically

just like actually playing and recording your results in a real casino

situation: hence the name (Wikipedia)

mutable data member The

namespace

ntuple

object

a container within a file system for a set of identifiers (names); usu-
ally grouped by functionality, they are used to keep different subsets of
code distinguishable from one another; identical names defined within
different namespaces are disambiguated via their namespace prefix

an ordered list of n elements used to describe objects such as vectors or
tables

an instantiation of any data type, built-in types (e.g., int, double, float)
or class types; i.e., a location range in memory containing an instantia-
tion

object-oriented language a programming language that supports OOP; this usually means

support for classes, including public and private data and functions

XXixX

object-oriented programming (OOP) a programming language model organized around

oop

output module

parameter set

path

physics

pointer

process_name

producer module

objects rather than procedures, where objects are quantities of interest
that can be manipulated. (In contrast, programs have been viewed his-
torically as logical procedures that read in data, process the data and
produce output.) Objects are defined by classes that contain attributes
(data fields that describe the objects) and associated procedures. See
C++ class; object.

see object oriented programming

an art module that writes data products to output file(s); it may select
a subset of data products in a subset of events; an art module contains
zero or more output modules

a C++ class , defined by FHICL-CPP, that is used to hold run-time
configuration for art itself or for modules and services instantiated by
art. In a FHiCL file, a parameter set is represented by a FHiCL table;
see table

a generic word based on the UNIX concept of PATH that refers to a
colon-separated list of directories used by art when searching for vari-
ous files (e.g., data input, configuration, and so on)

in art, physics is the label for a portion of the run-time configuration
of a job; this portion contains up to five sections, each labeled with a
reserved

a variable whose value is the address of (i.e., that points to) a piece
of information in memory. A native C++ pointer is often referred to
as a bare pointer. art defines different sorts of smart pointers (or safe
pointers) for use in different circumstances. One commonly used type
of smart pointer is called a handle.

a parameter to which the user assigns a mnemonic value identifying
the physics content of the associated FHiCL parameter set (i.e., the
parameters used in the same FHiCL file). The process_name value is
embedded into every data product created via the FHiCL file.

an art module that may read information from the current event and

XXX

product

redmine

ROOT

ROOT files

may add information to it
See either external product or data product

an open source, web-based project management and bug-tracking tool
used as a repository for art code and related code and documentation

an HEP data management and data presentation package used by art
and supported by CERN; art is designed to allow output of event-data
to files in ROOT format, in fact currently it is the only output format
that art implements

There are two types of ROOT files managed by art: (1) event-data
output files, and (2) the file managed by TFileService that holds user-
defined histograms, ntuples, trees, etc.

a period of data collection, defined by the experiment (usually delin-
eates a period of time during which certain running conditions remain
unchanged); a run contains zero or more subRuns

run-time configuration (processing-related) structured documents describing all process-

safe pointer

SAM

scope

ing aspects of a single job including the specification of parameters and
workflow; in art it is supplied by a FHiCL file; see FHiCL

see pointer

(Sequential data Access via Metadata) a Fermilab-supplied product
that provides the functions of a file catalog, a replica manager and some
functions of a batch-oriented workflow manager

sequence (in FHiCL) one or more comma-separated FHiCL values delimited by square

service

brackets (

) in a FHiCL file is called a sequence (as distinct from a table)

in art, a singleton-like object (type) whose lifetime and configuration
are managed by art, and which can by accessed by module code and by
other services by requesting a service handle to that particular service.

XXX1

shared library

The service type is used to provide geometrical information, conditions
and management of the random number state; it is also used to imple-
ment some internal functionality. See also T File Service

signature (of a function) the unique identifier of a C++ a function, which includes: (a)

site

smart pointer

source

source code

source module

its name, including any class name or namespace components, (b) the
number and type of its arguments, (c¢) whether it is a member function,
(d) whether it is a const function (Note that the signature of a function
does not include its return type.)

As used in the art documentation, a site is a unique combination of
experiment and institution; used to refer to a set of computing resources
configured for use by a particular experiment at a particular institution.
This means that, for example, the Workbook environment on a MuZ2e-
owned computer at Fermilab will be different than that on an Mu2e-
owned computer at LBL. Also, the Workbook environment on a MuZ2e-
owned computer at Fermilab will be different from that on an LBNE-
owned computer at Fermilab.

see pointer

(refers to a data source) the name of the parameter set inside an FHiCL
file describing the first step in the workflow for processing an event;
it reads in each event sequentially from a data file or creates an empty
event; see also source code; see also EDsource

code written in C++ (the programming language used with arf) that
requires compilation and linking to create an executable program

an art module that can initiate an art path by reading in event(s) from
a data file or by creating an empty event; it is the first step of the pro-
cessing chain

standard library, C++ the C++ standard library of routines

std

struct

identifier for the namespace used by the C++ standard library

identical to a C++ class except all members are public (instead of pri-

XXXi1

subRun

table (in FHiCL)

template (C++)

TFileService

truth information

TTrees

type

vate) by default

a period of data collection within a run, defined by the experiment (it
may delineate a period of time during which certain run parameters re-
main unchanged); a SubRun is contained within a run; a subRun con-
tains zero or more events

a group of FHiCL definitions delimited by braces ({ ... }) is called a
table; within art, a FHiCL table gets turned into an object called a
parameter set. Consequently, a FHiCL table is typically called a pa-
rameter set. See parameter set.

Templates are a feature of C++ that allows for meta-programming. In
practical terms, the coder can write an algorithm that is independent of
type, as long as the type supports the features required by the algorithm.
For example, there is a standard library “sort” algorithm that will work
for any type that provides a way to determine if one object of the type
is “less than” another object of the type.

an art service used by all experiments to give each module a ROOT
subdirectory in which to place its own histograms, TTrees, and so on;
see TTrees and ROOT

One use of simulated events is to develop, debug and characterize the
algorithms used in reconstruction and analysis. To assist in these tasks,
the simulation code often creates data products that contain detailed in-
formation about the right answers at intermediate stages of reconstruc-
tion and analysis; they also write data products that allow the physicist
to ask “is this a case in which there is an irreducible background or
should I be able to do better?” This information is called the truth in-
formation, the Monte Carlo truth or the God’s block.

a ROOT implementation of a tree; see tree and ROOT

Variables and objects in C++ must be classified into fypes, e.g., built-
in types (integer, boolean, float, character, etc.), more complex user-
defined classes/structures and typedefs; see class, struct, and typedef.
The word type in the context of C++ and art is the same as data type

XXX1il

typedef

UPS/UPD

user code

variable

unless otherwise stated.

A typedef is a different name, or an alias, by which a type can be identi-
fied. Type aliases can be used to reduce the length of long or confusing
type names, but they are most useful as tools to abstract programs from
the underlying types they use (cplusplus.com).

a Fermliab-developed system for distributing software products

experiment-specific and/or analysis-specific C++ code that uses the art
framework; this includes any personal code you write that uses art.

a storage location and an associated symbolic name (an identifier) which
contains some known or unknown quantity or information, a value. The

variable name is the usual way to reference the stored value; this sep-

aration of name and content allows the name to be used independently

of the exact information it represents.

XXX1V

Part I

Introduction

art Documentation

1-2 Chapter 1: How to Read this Documentation

1 How to Read this Documentation

The art document suite, which is currently in an alpha release form, consists of an intro-
ductory section and the first few exercises of the Workbook] plus a glossary and an index.
There are also some preliminary (incomplete and unreviewed) portions of the Users Guide
included in the compilation.

The Workbook exercises require you to download some code to edit, execute and evalu-
ate. Both the documentation and the code it references are expected to undergo continual
development throughout 2013 and 2014. The latest is always available at the art Docu-
mentation website. Chapter [T] tells you how to keep up-to-date with improvements and
additions to the Workbook code and documentation.

1.1 If you are new to HEP Software...

Read Parts I and II (the introductory material and the Workbook) from start to finish. The
Workbook is aimed at an audience who is familiar with (although not necessarily expert
in) Unix, C++ and Fermilab’s UPS product management system, and who understands the
basic art framework concepts. The introductory chapters prepare the “just starting out”
reader in all these areas.

1.2 If you are an HEP Software expert...

Read chapters [I] [2] and [3} this is where key terms and concepts used throughout the art
document suite get defined. Skip the rest of the introductory material and jump straight

*The Workbook is expected to contain roughly 35 exercises when complete.

Part

https://sharepoint.fnal.gov/project/ArtDoc-Pub/SitePages/Home.aspx
https://sharepoint.fnal.gov/project/ArtDoc-Pub/SitePages/Home.aspx

Chapter 1: How to Read this Documentation 1-3

into running Exercise 1 in Chapter [9] of the Workbook. Take the approach of: Don’t need
it? Don’t read it.

1.3 If you are somewhere in between...

Read chapters and [3| and skim the remaining introductory material in Part I to glean
what you need. Along with the experts, you can take the approach of: Don’t need it? Don’t
read it.

art Documentation

2-4 Chapter 2: Conventions Used in this Documentation

2 Conventions Used in this Documentation

Most of the material in this introduction and in the Workbook is written so that it can
be understood by those new to HEP computing; if it is not, please let us know (see Sec-

tion[3.4)!

The first instance of each term that is defined in the glossary is written in italics followed
by a v (Greek letter gamma), e.g., framework(7y).

Unix commands that you must type are shown in the format unix command . Portions
of the command for which you must substitute values are surrounded by angle brackets
(< ... >,e.g., youwould type your actual username when you see <username>).

When an example Unix command line would overflow the page width, this documentation
will use a trailing backslash to indicate that the command is continued on the next line.
For example:

mkdir -p $ART_WORKBOOK_WORKING_BASE/<username> /workbook-tutorial /\
directoryl /directory2/directory3

This means that you should type the entire command on a single line if it fits, without
typing the backslash, or on two lines with the backslash as the final character of the first
line.

Step-by-step procedures that the reader is asked to follow are de-
noted in this way. Commands inside procedures are denoted as
mkdir -p <mydir> .

Computer output from a command is shown as:

Part

Chapter 2: Conventions Used in this Documentation 2-5

command output

paragraphs will be marked with a “dangerous bends” symbol in the margin, as shown at

In some places it will be necessary for a paragraph or two to be written for experts. Such
right. Less experienced users can skip these sections on first reading and come back to Q

them at a later time.

Occasionally, text will be called out to make sure that you don’t miss it. Important or
tricky terms and concepts will be marked with an “pointing finger” symbol in the margin, Ca
as shown at right.

Items that are even trickier will be marked with a “bomb” symbol in the margin, as shown ‘
at right. You really want to avoid the problems they describe.

Text that refers in particular to Fermilab-specific information is marked with a Fermilab T
L
picture, as shown at right. o

Text that refers in particular to information about using arf at non-Fermilab sites is marked

with a “generic site” picture, as shown at right. A site is defined as a unique combination of
experiment and institution, and is used to refer to a set of computing resources configured
for use by a particular experiment at a particular institution.

Experiment-specific information will be kept to an absolute minimum; wherever it ap- .
pears, it will be marked with an experiment-specific icon, e.g., the Mu2e icon at right. Z

art Documentation

3-6 Chapter 3: Introduction to the art Event Processing Framework

3 Introduction to the art Event Processing
Framework

3.1 What is art and Who Uses it?

art(y) is an event-processing framework(y) developed and supported by the Fermilab Sci-
entific Computing Division (SCD). The art framework is used to build physics programs
by loading physics algorithms, provided as plug-in modules. Each experiment or user
group may write and manage its own modules. art also provides infrastructure for com-
mon tasks, such as reading input, writing output, provenance tracking, database access and
run-time configuration.

The initial clients of art are the Fermilab Intensity Frontier experiments but nothing pre-
vents other experiments from using it as well. The name art is always written in italic
lower case; it 1s not an acronym.

art 1s written in C++ and is intended to be used with user code written in C++. (User
code includes experiment-specific code and any other user-written, non-art, non-external-
product(y) code.)

art has been designed for use in most places that a typical HEP experiment might require
a software framework, including:

o high-level software triggers
o online data monitoring
o calibration

o reconstruction

Part

Chapter 3: Introduction to the art Event Processing Framework 3-7

o analysis
o simulation

art is not designed for use in real-time environments, such as the direct interface with
data-collection hardware.

The Fermilab SCD has also developed a related product named artdaq(7y), a layer that
lives on top of art and provides features to support the construction of data-acquisition
(DAQ(7y)) systems based on commodity servers. Further discussion of artdagq is outside the
scope of this documentation; for more information consult the artdag redmine site:

https://cdcvs.fnal.gov/redmine/projects/artdaqg/wiki.

The design of art has been informed by the lessons learned by the many High Energy
Physics (HEP) experiments that have developed C++ based frameworks over the past 20
years. In particular, it was originally forked from the framework for the CMS experiment,
cmsrun.

Experiments using art are listed at the art Documentation website under “Experiments
using art.”

3.2 Why art?

In all previous experiments at Fermilab, and in most previous experiments elsewhere, in-
frastructure software (i.e., the framework, broadly construed — mostly forms of bookkeep-
ing) has been written in-house by each experiment, and each implementation has been
tightly coupled to that experiment’s code. This tight coupling has made it difficult to share
the framework among experiments, resulting in both great duplication of effort and mixed
quality.

art was created as a way to share a single framework across many experiments. In partic-
ular, the design of art draws a clear boundary between the framework and the user code;
the art framework (and other aspects of the infrastructure) is developed and maintained
by software engineers who are specialists in the field of HEP infrastructure software; this
provides a robust, professionaly maintained foundation upon which physicists can develop
the code for their experiments. Experiments use art as an external package. Despite some

art Documentation

https://cdcvs.fnal.gov/redmine/projects/artdaq/wiki
https://sharepoint.fnal.gov/project/ArtDoc-Pub/SitePages/Home.aspx

3-8 Chapter 3: Introduction to the art Event Processing Framework

constraints that this separation imposes, it has improved the overall quality of the frame-
work and reduced the duplicated effort.

3.3 C++ and C++11

In 2011, the International Standards Committee voted to approve a new standard for C++,
called C++ 11.

Much of the existing user code was written prior to the adoption of the C++ 11 standard
and has not yet been updated. As you work on your experiment, you are likely to encounter
both code written the new way and code written the old way. Therefore, the Workbook will
often illustrate both practices.

A very useful compilation of what is new in C4++ 11 can be found at
https://cdcvs.fnal.gov/redmine/projects/gm2public/wiki/CPP201 1

This reference material is written for advanced C++ users.

3.4 Getting Help

Please send your questions and comments to art-users @fnal.gov. More support informa-
tion is listed at https://sharepoint.fnal.gov/project/ArtDoc-Pub/SitePages/Support.aspx.

3.5 Overview of the Documentation Suite

When complete, this documentation suite will contain several principal components, or
volumes: the introduction that you are reading now, a Workbook, a Users Guide, a Refer-
ence Manual, a Technical Reference and a Glossary. At the time of writing, drafts exist for
the Introduction, the Workbook, the Users Guide and the Glossary. The components in the
documentation suite are illustrated in Figure[3.1]

Part

https://cdcvs.fnal.gov/redmine/projects/gm2public/wiki/CPP2011
https://sharepoint.fnal.gov/project/ArtDoc-Pub/SitePages/Home.aspx

Chapter 3: Introduction to the art Event Processing Framework

Workbook

Exercise 1
Activity 1
Activity 2

Exercise 2
Activity 1
Activity 2

Exercise N

Introduction
What is a framework
Define Prerequisites
Overview of documentation

Reference
\YELUE]L

Technical
Reference

External Refs
Root, C++, STL, G4

Users Guide
Table of Contents
Users view of art
Modules
Services
FHICL
Interface to G4
Interface to SAM

L
2.
3
4,
5.
b.
7

Trouble Shooting
CLHEP gap Filler Docs

G ary

Figure 3.1: The principal components of the art documentation suite

art Documentation

3-10 Chapter 3: Introduction to the art Event Processing Framework

3.5.1 The Introduction

This introductory volume is intended to set the stage for using art. It introduces art, pro-
vides background material, describes some of the software tools on which art depends,
describes its interaction with related software and identifies prerequisites for successfully
completing the Workbook exercises.

3.5.2 The Workbook

The Workbook is a series of standalone, self-paced exercises that will introduce the build-
ing blocks of the art framework and the concepts around which it is built, show practical
applications of this framework, and provide references to other portions of the documen-
tation suite as needed. It is targeted towards physicists who are new users of art, with the
understanding that such users will frequently be new to the field of computing for HEP
and to C++.

One of the Workbook’s primary functions is training readers how and where to find more
extensive documentation on both art and external software tools; they will need this in-
formation as they move on to develop and use the scientific software for their experi-
ment.

The Workbook assumes some basic computing skills and some basic familiarity with the
C++ computing language; Chapter [6] provides a tutorial/refresher for readers who need to
improve their C++ skills.

The Workbook is written using recommended best practices that have become current
since the adoption of C++ 11 (see Section 3.8).

Because art is being used by many experiments, the Workbook exercises are designed
around a foy experiment that is greatly simplified compared to any actual detector, but it
incorporates enough richness to illustrate most of the features of art. The goal is to enable
the physicists who work through the exercises to translate the lessons learned there into
the environment of their own experiments.

Part

Chapter 3: Introduction to the art Event Processing Framework 3-11

3.5.3 Users Guide

The Users Guide is targeted at physicists who have reached an intermediate level of com-
petence with art and its underlying tools. It contains detailed descriptions of the features of
art, as seen by the physicists. The Users Guide will provide references to the external prod-
ucts(vy) on which art depends, information on how art uses these products, and as needed,
documentation that is missing from the external products’ own documentation.

3.5.4 Reference Manual
The Reference Manual will be targeted at physicists who already understand the major
ideas underlying art and who need a compact reference to the Application Programmer

Interface (API(vy)). The Reference Manual will likely be generated from annoted source
files, possibly using Doxygen(7y).

3.5.5 Technical Reference

The Technical Reference will be targeted at the experts who develop and maintain art; few
physicists will ever want or need to consult it. It will document the internals of art so that
a broader group of people can participate in development and maintenance.

3.5.6 Glossary

The glossary will evolve as the documentation set grows. At the time of writing, it includes
definitions of art-specific terms as well as some HEP, Fermilab, C++ and other relevant
computing-related terms used in the Workbook and the Users Guide.

3.6 Some Background Material

This section defines some language and some background material about the art frame-
work that you will need to understand before starting the Workbook.

art Documentation

3-12 Chapter 3: Introduction to the art Event Processing Framework

3.6.1 Events and Event IDs

In almost all HEP experiments, the core idea underlying all bookkeeping is the event(7).
In a triggered experiment, an event is defined as all of the information associated with a
single trigger; in an untriggered, spill-oriented experiment, an event is defined as all of
the information associated with a single spill of the beam from the accelerator. Another
way of saying this is that an event contains all of the information associated with some
time interval, but the precise definition of the time interval changes from one experiment
to another [] Typically these time intervals are a few nanoseconds to a few tens of mir-
coseconds. The information within an event includes both the raw data read from the Data
Acquisition System (DAQ) and all information that is derived from that raw data by the
reconstruction and analysis algorithms. An event is the smallest unit of data that art can
process at one time.

In a typical HEP experiment, the trigger or DAQ system assigns an event identifier (event
ID) to each event; this ID uniquely identifies each event, satisfying a critical requirement
imposed by art that each event be uniquely identifable by its event ID. This requirement
also applies to simulated events.

The simplest event ID is a monotonically increasing integer. A more common practice is
to define a multi-part ID and art has chosen to use a three-part ID, including:

o run(y) number
o subRun(7y) number
o event(y) number

There are two common methods of using this event ID scheme and art allows experiments
to chose either:

1. When an experiment takes data, the event number is incremented every event. When
some predefined condition occurs, the event number is reset to 1 and the subRun
number is incremented, keeping the run number unchanged. This cycle repeats until
some other predefined condition occurs, at which time the event number is reset to

*There is a second, distinct, sense in which the word event is sometimes used; it is used as a synonym
for a fundamental interaction; see the glossary entry for event (fundamental interaction)(y). Within this
documentation suite, unless otherwise indicated, the word event refers to the definition given in the main
body of the text.

Part

Chapter 3: Introduction to the art Event Processing Framework 3-13

1, the subRun number is reset to 0 (O not 1 for historical reasons) and the run number
is incremented.

2. The second method is the same as the first except that the event number mononton-
ically increases throughout a run and does not reset to 1 on subRun boundaries. The
event number does reset to 1 at the start of each run.

art does not define what conditions cause these transitions; those decisions are left to each
experiment. Typically experiments will choose to start new runs or new subRuns when
one of the following happens: a preset number of events is acquired; a preset time interval
expires; a disk file holding the ouptut reaches a preset size; or certain running conditions
change.

art requires only that a subRun contain zero or more events and that a run contain zero or
more subRuns.

When an experiment takes data, events read from the DAQ are typically written to disk
files, with copies made on tape. The events in a single subRun may be spread over sev-
eral files; conversely, a single file may contain many runs, each of which contains many
subRuns.

3.6.2 art Modules and the Event Loop

Users provide executable code to art in pieces called art modules(fyﬂ that are dynamically
loaded as plugins and that operate on event data. The concept of reading events and, in
response to each new event, calling the appropriate member functions of each module, is
referred to as the event loop(~y). The concepts of the art module and the event loop will be
illustrated via the following discussion of how art processes a job.

The simplest command to run art looks like:
art -c <file> fcl

The argument to -c is the run-time configuration file(y), a text file that tells one run of
art what it should do. Run-time configuration files for art are written in the Fermilab

JrMany programming languagues have an idea named module; the use of the term module by art and in
this documentation set is an art-specific idea that will be developed through the first few chapters of the
Workbook.

art Documentation

3-14 Chapter 3: Introduction to the art Event Processing Framework

Hierarchical Configuration Language FHiCL(y) (pronounced “fickle”) and the filenames
end in . fcl1. As you progress through the Workbook, this language and the conventions
used in the run-time configuration file will be explained; the full details are available in
Chapter [25] of the Users Guide. (The run-time configuration file is often referred to as
simply the configuration file or even more simply as just the configuration(vy).)

When art starts up, it reads the configuration file to learn what input files it should read,
what user code it should run and what output files it should write. As mentioned above, an
experiment’s code (including any code written by individual experimenters) is provided
in units called art modules. A module is simply a C++ class, provided by the experi-
ment or user, that obeys a set of rules defined by art and whose source code(7y) file gets
compiled into a shared object(y) library that can be dynamically loaded by art. These
rules will be explained as you work through the Workbook and they are summarized in

Section[32.3]

The code base of a typical experiment will contain many C++ classes. Only a small fraction
of these will be modules; most of the rest will be ordinary C++ classes that are used within
modules?]

A user can tell art the order in which modules should be run by specifying that order in
the configuration file. A user can also tell art to determine, on its own, the correct order in
which to run modules; the latter option is referred to as reconstruction on demand.

Imagine the processing of each event as the assembly of a widget on an assembly line
and imagine each module as a worker that needs to perform a set task on each widget.
Each worker has a task that must be done on each widget that passes by; in addition some
workers may need to do some start-up or close-down jobs. Following this metaphor, art
requires that each module provide code that will be called once for every event and art
allows any module to provide code that will be called at the following times:

o at the start of the art job
o at the end of the art job
o at the start of each run

o at the end of each run

Lart defines a few other specialized roles for C++ classes; you will encounter these in Sections m

and

Part

Chapter 3: Introduction to the art Event Processing Framework 3-15

o at the start of each SubRun
o at the end of each SubRun

For those of you who are familiar with inheritance in C++, a module class (i.e., a “mod-
ule’”) must inherit from one of a few different module base classes. Each module class
must override one pure-virtual member function from the base class and it may override
other virtual member functions from the base class.

After art completes its initialization phase (intentionally not detailed here), it executes the
event loop. This is illustrated in Figure which is described in the text below:

1. calls the constructor(vy) of every module in the configuration
2. calls the beginJob member function(y) of every module that provides one
3. reads one event from the input source, and for that event

(a) determines if it is from a run different from that of the previous event (true for
first event in loop)

(b) if so, calls the beginRun member function of each module that provides one

(c) determines if the event is from a subRun different from that of the previous
event (true for first event in loop)

(d) if so, calls the beginSubRun member function of each module that provides
one

(e) calls each module’s (required) per-event member function

4. reads the next event and repeats the above per-event steps until it encounters a new
subRun

5. closes out the current subRun by calling the endSubRun member function of each
module that provides one

6. repeats steps 4 and 5 until it encounters a new run

7. closes out the current run by calling the endRun member function of each module
that provides one

8. repeats steps 3 through 7 until it reaches the end of the input source

art Documentation

3-16 Chapter 3: Introduction to the art Event Processing Framework

Medule 1
Module 2
| | | Module 3
- Constructor
Module 1 |
Module 2 |
| | Module 3
- beginleb
Read Event
Module 1
> Module 2
Medule 3
endSubRun
Module 1 Module 1
New Run? Yes Module 2 Module 2
Module 3 L | | Module3
Ne endRun L| endSubRun
Module 1
g Module 2 |
(| | Module 3
Module 2 | endRun
Module 3
beginRun
Module 2
Module 3
L
y - endlob
Module 1
Module 2
Module 1
Module 3
Module 2
beginSubRun
Module 3
L} destructor
Module 1
Module 2
Module 3
analyze/produce

Figure 3.2: Flowchart describing the art event loop for an input file that contains at least one event.
art begins at the box in the upper left and ends at the box in the lower right. On the first event, the
tests for new subRun and new run are true. Not all features of the event loop are shown, just those
that you will encounter in the early parts of the art workbook. The case of a file with no events is
not shown because it has many subcases and is not of general interest.

Part

Chapter 3: Introduction to the art Event Processing Framework 3-17

9. calls the endJob member function of each module that provides one
10. calls the destructor(y) of each module

This entire set of steps comprises the event loop. One of art’s most visible jobs is control-
ling the event loop.

3.6.3 Module Types

Every art module must be one of the following five types, which are defined by the ways
in which they interact with each event and with the event loop:

analyzer module(~y) May inspect information found in the event but may not add new
information to the event; described in Chapter 28].

producer module() May inspect information found in the event and may add new infor-
mation to the event; described in Chapter 27

filter module(~y) Same functions as a producer module but may also tell art to skip the
processing of some, or all, modules for the current event; may also control which
events are written to which output; described in Chapter [29]

source module(y) Reads events, one at a time, from some source; art requires that every
art job contain exactly one source module. A source is often a disk file but other
options exist and will be described in the Workbook and Users Guide.

output module(y) Reads an event from memory and writes it to an output; an art job may
contain zero or more output modules. An ouptut is often a disk file but other options
exist and will be described in the Workbook and in .

Note that no module may change information that is already present in an event. Ca

What does an analyzer do if it may neither alter information in an event nor add to it?
Typically it creates printout and it creates ROOT files containing histograms, trees(y) and
nuples(vy) that can be used for downstream analysis. (If you have not yet encountered these
terms, the Workbook will provide explanations as they are introduced.)

Most novice users will only write analyzer modules and filter modules; readers with a little
more experience may also write producer modules. The Workbook will provide examples
of all three. Few people other than art experts and each experiment’s software experts will

art Documentation

3-18 Chapter 3: Introduction to the art Event Processing Framework

write source or output modules, however, the Workbook will teach you what you need to
know about configuring source and output modules.

3.6.4 art Data Products

This section introduces more ideas and terms dealing with event information that you will
need as you progress through the Workbook.

The term data product(vy) is used in art to mean the unit of information that user code may
add to an event or retrieve from an event. A typical experiment will have the following
sorts of data products:

1. The DAQ system will package the raw data into data products, perhaps one or two
data products for each major subsystem.

2. Each module in the reconstruction chain will create one or more data products.

3. Some modules in the analysis chain will produce data products; others may just
make histograms and write information in non-art formats for analysis outside of
art; they may, for example, write user-defined ROOT TTrees.

4. The simulation chain will usually create many data products. Some will be simu-
lated event-data while others will describe the true properties of the simulated event.
These data products can be used to study the response of the detector to simulated
events; they can also be used to develop, debug and characterize the reconstruction
algorithms.

Because these data products are intrinsically experiment-dependent, each experiment de-
fines its own data products. In the Workbook, you will learn about a set of data products
designed for use with the toy experiment. There are a small number of data products that
are defined by art and that hold bookkeeping information; these will be described as you
encounter them in the Workbook.

A data product is just a C++ fype(7y) (a class, struct(vy) or typedef) that obeys a set of rules
defined by art; these rules are very different than the rules that must be followed for a class
to be a module . A data product can be a single integer, an large complex class hierarchy,
or anything in between.

Very often, a data product is a collection(y) of some experiment-defined type. The C++

Part

Chapter 3: Introduction to the art Event Processing Framework 3-19

standard libraries define many sorts of collection types; art supports many of these and
also provides a custom collection type named cet : :map_vector . Workbook exercises
will clarify the data product and collection type concepts.

3.6.5 art Services

Previous sections of this Introduction have introduced the concept of C++ classes that have
to obey a certain set of rules defined by art, in particular, modules in Section[3.6.2]and data
products in Section art services(y) are yet another example of this.

In a typical art job, two sorts of information need to be shared among the modules. The
first sort is stored in the data products themselves and is passed from module to module
via the event. The second sort is not associated with each event, but rather is valid for some
aggregation of events, subRuns or runs, or over some other time interval. Three examples
of this second sort include the geometry specification, the conditions informatiorﬁ and, for
simulations, the table of particle properties.

To provide managed access to the second sort of information, art supports an idea named
art services (again, shortened to services). Services may also be used to provide certain
types of utility functions. Again, a service in art is just a C++ class that obeys a set of
rules defined by art. The rules for services are different than those for modules or data
products.

art implements a number of services that it uses for internal functions, a few of which
you will encounter in the first couple of Workbook exercises. The message service(ry)
is used by both art and experiment-specific code to limit printout of messages with a
low severity level and to route messages to appropriate destinations. It can be configured
to provide summary information at the end of the art job. The TFileService(vy) and the
RandomNumberGenerator service are not used internally by art, but are used by most
experiments. Experiments may also create and implement their own services.

After art completes its initialization phase and before it constructs any modules (see Sec-

tion|3.6.2)), it

§The phrase “conditions information” is the currently fashionable name for what was once called “calbra-
tion constants”; the name change came about because most calibration information is intrinsically time-
dependent, which makes “constants” a poor choice of name.

art Documentation

3-20 Chapter 3: Introduction to the art Event Processing Framework

1. reads the configuration to learn what services are requested
2. calls the constructor of each requested service

Once a service has been constructed, any code in any module can ask art for a smart
pointer(y) to that service and use the features provided by that service. Because services
are constructed before modules, they are available for use by modules over the full life
cycle of each module.

It is also legal for one service to request information from another service as long as the
dependency chain does not have any loops. That is, if Service A uses Service B, then
Service B may not use Service A, either directly or indirectly.

For those of you familiar with the C++ Singleton Design Pattern, an art service has some
differences and some similarities to a Singleton. The most important difference is that the
lifetime of a service is managed by art, which calls the constructors of all services at a
well-defined time in a well-defined order. Contrast this with the behavior of Singletons,
for which the order of initialization is undefined by the C++ standard and which is an
accident of the implementation details of the loader. art also includes services under the
umbrella of its powerful run-time configuration system; in the Singleton Design pattern
this issue is simply not addressed.

3.6.6 Shareable Libraries and art

When code is executed within the art framework, art, not the experiment, provides the
main executable. The experiment provides its code to the art executable in the form of
shareable object libraries that art loads dynamically at run time; these libraries are also
called dynamic load libraries or plugins and their filenames are required to end in . so.
For more information about shareable libraries, see Section [32.3]

3.6.7 Build Systems and art

To make an experiment’s code available to art, the source code must be compiled and
linked (i.e., built) to produce shareable object libraries (Section[3.6.6)). The tool that creates
the . so files from the C++ source files is called a build system().

Experiments that use art are free to choose their own build systems, as long as the system

Part

Chapter 3: Introduction to the art Event Processing Framework 3-21

Table 3.1: Compiler flags for the optimization levels defined by cetbuildtools; compiler options
not related to optimization or debugging are not included in this table.

Name flags

debug -0O0-g

prof -0O3 -g -fno-omit-frame-pointer -DNDEBUG
opt -O3 -DNDEBUG

follows the conventions that allow art to find the name of the . so file given the name of
the module class. The Workbook will use a build system named cetbuildtools, which is a
layer on top of cmakdﬂ

The cetbuildtools system defines three standard compiler optimization levels, called “de-
bug”, “profile” and “optimized”; the last two are often abbreviated “prof” and “opt”. When
code is compiled with the “opt” option, it runs as quickly as possible but is difficult to de-
bug. When code is compiled with the “debug” option, it is much easier to debug but it runs
more slowly. When code is compiled with the “prof” option the speed is almost as fast
as for an “opt” build and the most useful subset of the debugging information is retained.
The “prof” build retains enough debugging information that one may use a profiling tool to
identify in which functions the program spends most of its time; hence its name “profile”.
The “prof” build provides enough information to get a useful traceback from a core dump.
Most experiments using art use the “prof” build for production and the “debug” build for
development.

The compiler options corresponding to the three levels are listed in Table [3.1]

3.6.8 External Products

As you progress through the Workbook, you will see that the exercises use some software
packages that are part of neither art nor the toy experiment’s code. The Workbook code, art
and the software for your experiment all rely heavily on some external tools and, in order
to be an effective user of art-based HEP software, you will need at least some familiarity
with them; you may, in fact, need to become expert in some.

These packages and tools are referred to as external products(y) (sometimes called simply
products).

ﬂcetbuildtools is also used to build art itself.

art Documentation

3-22 Chapter 3: Introduction to the art Event Processing Framework

An initial list of the external products you will need to become familiar with includes:
art the event processing framework

FHiCL the run-time configuration language used by art

CETLIB a utility library used by art

MF () amessage facility that is used by art and by (some) experiments that use art
ROOT an analysis, data presentation and data storage tool widely used in HEP
CLHEP(v) a set of utility classes; the name is an acronym for Class Library for HEP

boost(y) a class library with new functionality that is being prototyped for inclusion in
future C++ standards

gcc the GNU C++ compiler and run-time libraries; both the core language and the standard
library are used by art and by your experiment’s code.

git(y) a source code management system that is used for the Workbook and by some
experiments; similar in concept to the older CVS and SVN, but with enhanced func-
tionality

cetbuildtools(y) a Fermilab-developed external product that contains buildtool and related
tools

UPS(y) a Fermilab-developed system for accessing software products; it is an acronym
for Unix Product Support.

UPD() a Fermilab-developed system for distributing software products; it is an acronym
for Unix Product Distribution.

Jjobusub_tools(7y) tools for submitting jobs to the Fermigrid batch system and monitoring
them.

ifdh_sam(~y) allows art to use SAM(~y) as an external run-time agent that can deliver re-
mote files to local disk space and can copy output files to tape. SAM is a Fermilab-
supplied resource that provides the functions of a file catalog, a replica manager and
some functions of a batch-oriented workflow manager

Any particular line of code in a Workbook exercise may use elements from, say, four or
five of these packages. Knowing how to parse a line and identify which feature comes from

Part

Chapter 3: Introduction to the art Event Processing Framework 3-23

which package is a critical skill. The Workbook will provide a tour of the above packages
so that you will recognize elements when they are used and you will learn where to find
the necessary documentation.

For the art Workbook, external products are made available to your code via a mechanism
called UPS, which will be described in Section [/, Many Fermilab experiments also use
UPS to manage their external products; this is not required by art and you may choose to
manage external products whichever way you prefer. UPS is, itself, just another external
product. From the point of view of your experiment, art is an external product. From the
point of view of the Workbook code, both art and the code for the toy experiment are
external products.

Finally, it is important to recognize an overloaded word, products. When a line of docu-
mentation simply says products, it may be refering either to data products or to external
products. If it is not clear from the context which is meant, please let us know (see Sec- Ca

tion [3.4).

3.6.9 The Event-Data Model and Persistency

Section [3.6.4]introduced the idea of art data products. In a small experiment, a fully recon-
structed event may contain on the order of ten data products; in a large experiment there
may be hundreds.

While each experiment will define its own data product classes, there are many issues that
are common to all data products in all experiments:

1. How does my module access data products that are already in the event?

2. How does my module publish a data product so that other modules can see it?

3. How is a data product represented in the memory of a running program?

4. How does an object in one data product refer to an object in another data product?

5. What metadata is there to describe each data product?
Such metadata might include: which module created it; what was the run-time con-
figuration of that module; what data products were read by that module; what was
the code version of the module that created it?

art Documentation

3-24 Chapter 3: Introduction to the art Event Processing Framework

6. How does my module access the metadata associated with a particular data product?

The answers to these questions form what is called the Event-Data Model(y) (EDM) that
is supported by the framework.

A question that is closely related to the EDM is: what technologies are supported to write
data products from memory to a disk file and to read them from the disk file back into
memory in a separate art job? A framework may support several such technologies. art
currently